Homepage / Science And Health Articles / Nicole Karlis's Articles

A brain implant that zaps away negative thoughts raises thorny ethical questions

6 min read
fairly difficult
Salon spoke to ethicists and philosophers about the implications of "deep brain stimulation," a novel technology to treat depression
A woman with severe depression has been nearly symptom-free for a year after a team of scientists at the University California–San Francisco implanted a device in her brain to interrupt depressive thoughts with a burst of electrical stimulation. The case is the first to demonstrate that highly targeted stimulation in a specific brain circuit involving depressive brain patterns can be an effective form of treatment for severe depression, which affects an estimated 5% of adults around the world.

The study on this treatment's success was published in the Oct. 4, 2021, issue of Nature Medicine, and has been hailed as a landmark moment. The intersection of neuroscience and a psychiatric disorder could pave the way for such a treatment to become more common in the future, especially for those who haven't had success with pharmaceutical treatments.

"This study points the way to a new paradigm that is desperately needed in psychiatry," said Andrew Krystal, PhD, professor of psychiatry and member of the UCSF Weill Institute for Neurosciences, in a news release. "We've developed a precision-medicine approach that has successfully managed our patient's treatment-resistant depression by identifying and modulating the circuit in her brain that's uniquely associated with her symptoms."

Previously, researchers have been unsuccessful using traditional deep brain stimulation (DBS) in similar treatments. That's because most devices only deliver constant electrical stimulation in one area of the brain. Historically, it has been a major challenge for scientists to target different areas of the brain in different people. This specific pacemaker for the brain proved to be a success with Sarah, who asked to be identified only by her first name, due to the discovery of a neural biomarker — a pattern of brain activity that senses the onset of symptoms — and the research team's ability to customize a new DBS device to respond to that specific pattern.

​​"What we believe is happening in…
Nicole Karlis
Read full article