Home / Biology / Molecular & Computational biology

A new method to understand protein dynamics and the regulation of cellular processes

2 min read
Cellular processes are regulated through the balance between protein shapes that confer active or inactive functions. In the complexity of cellular regulations, the preferred shape (or conformation) of a protein often depends on the binding of another molecule (called effector), thus implying that the same protein can exert distinct functions depending on the effector it binds to. At the molecular level, protein functions thus translate into protein dynamics, which is key for the development of all cellular processes, from cell division to energy provision and cell fate determination.
Coevolution drives the exploration of functional space in biomolecular regulations. Credit: Institute for Research in Biomedicine (IRB Barcelona)

Researchers led by Dr. Modesto Orozco in the Molecular Modelling and Bioinformatics lab at IRB Barcelona have developed a new computational procedure that allows the discovery and quantification of functional protein shapes, thus enabling the molecular details of cellular processes to be revealed. This work focuses on the proteins under allosteric regulation, meaning that the change in their shape happens in a region distant from the binding site of the effector.

Using this method, the scientists have studied the regulation of adenylate cyclase (AC), a key enzyme involved in the control of a variety of cellular processes, including mediating the effects of a number of hormones…
Science X staff
Read full article