Home / Biology / Molecular & Computational biology

Cell's energy secrets revealed with supercomputers

phys.org
5 min read
fairly difficult
It takes two to tango, as the saying goes.
Supercomputer simulations have revealed for the first time how the cell's mitochondrial voltage-dependent anion channel (VDAC) binds to the enzyme hexokinase-II (HKII). Artistic depiction of membrane binding of the cytosolic enzyme Hexokinase (light blue), followed by its complex formation with the integral membrane protein VDAC (dark blue), at the surface of the outer membrane of mitochondria. ATP (red) are phosphorylated by HKII. This basic research will help researchers understand the molecular basis of diseases such as cancer. Credit: Haloi, N., Wen, PC., Cheng, Q. et al.



This is especially true for scientists studying the details of how cells work. Protein molecules inside a cell interact with other proteins, and in a sense the proteins dance with a partner to respond to signals and regulate each other's activities.

Crucial to giving cells energy for life is the migration of a compound called adenosine triphosphate (ATP) out of the cell's powerhouse, the mitochondria. And critical for this flow out to the power-hungry parts of the cell is the interaction between a protein enzyme called hexokinase-II (HKII) and proteins in the voltage-dependent anion channel (VDAC) found on the outer membrane of the mitochondria.

Supercomputer simulations have revealed for the first time how VDAC binds to HKII. The work was supported by allocations awarded by the Extreme Science and Engineering Discovery Environment (XSEDE) on the Stampede2 system of the Texas Advanced Computing Center (TACC). XSEDE is funded by the National Science Foundation.

This basic research in how proteins interact out of the cell's powerhouses, the mitochondria, will help researchers understand the molecular basis of diseases such as cancer.

"We had strong evidence that they bind, but we didn't know how they bind to each other," said Emad Tajkhorshid, the J. Woodland Hastings Endowed Chair in Biochemistry at the University of Illinois at Urbana-Champaign. "That was the million-dollar…
Jorge Salazar
Read full article