Future Chips Will Be Hotter Than Ever

spectrum.ieee.org
6 min read
standard
Technologies coming into production now mean new problems with handling heat
For over 50 years now, egged on by the seeming inevitability of Moore's Law, engineers have managed to double the number of transistors they can pack into the same area every two years. But while the industry was chasing logic density, an unwanted side effect became more prominent: heat.

In a system-on-chip (SoC) like today's CPUs and GPUs, temperature affects performance, power consumption, and energy efficiency. Over time, excessive heat can slow the propagation of critical signals in a processor and lead to a permanent degradation of a chip's performance. It also causes transistors to leak more current and as a result waste power. In turn, the increased power consumption cripples the energy efficiency of the chip, as more and more energy is required to perform the exact same tasks.

The root of the problem lies with the end of another law: Dennard scaling. This law states that as the linear dimensions of transistors shrink, voltage should decrease such that the total power consumption for a given area remains constant. Dennard scaling effectively ended in the mid-2000s at the point where any further reductions in voltage were not feasible without compromising the overall functionality of transistors. Consequently, while the density of logic circuits continued to grow, power density did as well, generating heat as a by-product.

As chips become increasingly compact and powerful, efficient heat dissipation will be crucial to maintaining their performance and longevity. To ensure this efficiency, we need a tool that can predict how new semiconductor technology—processes to make transistors, interconnects, and logic cells—changes the way heat is generated and removed. My research colleagues and I at Imec have developed just that. Our simulation framework uses industry-standard and open-source electronic design automation (EDA) tools, augmented with our in-house tool set, to rapidly explore the interaction between semiconductor technology and the systems built with…
James Myers
Read full article