Home / Biology / Molecular & Computational biology

How to modify RNA: Crucial steps for adding chemical tag to transfer RNA revealed

phys.org
3 min read
fairly difficult
The chemical steps in an important cellular modification process that adds a chemical tag to some RNAs have been revealed in a new study. Interfering with this process in humans can lead to neuronal diseases, diabetes, and cancers. A research team, led by chemists at Penn State, has imaged a protein that facilitates this RNA modification in bacteria, allowing the researchers to reconstruct the process. A paper describing the modification process appears Sept. 15 in the journal Nature.
A new study by Penn State researchers has revealed the chemical steps involved in adding an important tag—a methyl sulfur group—to transfer RNA, a process that, if interfered with in humans, can lead to neuronal diseases, diabetes, and cancers. Credit: Booker Lab, Penn State



Transfer RNAs (tRNA) are the RNAs that "read" the genetic code and translate it into a sequence of amino acids to make a protein. The addition of a chemical tag—a methyl sulfur group—to a particular location on some tRNAs improves their ability to translate messenger RNA into proteins. When this modification process—called methylthiolation—doesn't occur properly, mistakes can be incorporated into the resulting proteins, which in humans can lead to neuronal disease, cancer, and increased risk of developing Type 2 diabetes.

"Methylthiolation is ubiquitous across bacteria, plants, and animals," said Squire Booker, a biochemist at Penn State and investigator with the Howard Hughes Medical Institute who led the research team. "In this study, we determined the structure of a protein called MiaB to better understand its role in facilitating this important modification process in bacteria."

The MiaB protein from the bacteria Bacteroides uniforms is a member of the radical SAM (S-adenosylmethionine) family of enzymes. Radical SAM…
Science X staff
Read full article