Solid-state batteries for electric vehicles, offering greater energy density and range than contemporary lithium-ion batteries, remain out of reach, not least due to challenges coming from the composition of the battery's cathode. A new cathode composition and accompanying manufacturing technique looks set to overcome this hurdle.
Researchers designed solid-state composite electrodes based on the liquid-phase sintering technique. Credit: Nano Research A paper describing the manufacturing process appeared in the journal Nano Research on Mar. 24. Rechargeable solid-state batteries (ones that are completely solid, with no liquid components) have long been sought as the next generation of energy storage, not least for electric vehicles and other climate mitigation applications. They would be lighter, more energy dense, offering greater range and faster recharging than the current generation of lithium-ion batteries. The liquid electrolyte used in the latter is the medium through which current flows between the positive and negative electrodes (the cathode and anode, respectively). But the liquid makes the battery heavy. It's also flammable and fires are not an uncommon occurrence. In a solid-state battery, a solid electrolyte made of ceramic, glass or a polymer is much safer as there are no leaks or splashing about while in transit, and offers improved power density, cyclability and shelf life. Key to making solid-state batteries work is designing a good cathode that it is capable of a high operating voltage and high area capacity. The latter term describes the amount of energy charge in a battery per unit of area for a given period of time. The unit commonly used to describe this quantity is the milliampere-hour (mAh)—or the amount of energy charge that will allow one amp of current to flow…