A space elevator, a structure connecting the Earth's surface to a space station, would allow for the cost-efficient transport of people and materials. However, a very light yet strong material is essential to making such a technology a reality. The carbon nanotube is a new kind of material that is 100 times stronger than steel, yet four times lighter, with copper-like high electrical conductivity and diamond-like thermal conductivity. However, previous carbon nanotube fibers were not ideal for extensive use, owing to the small contact area with adjacent carbon nanotubes and limited length they possessed.
Schematic of the structural changes of carbon nanotubes at different annealing temperatures. Credit: Korea Institute of Science and Technology A research team led by Dr. Bon-Cheol Ku at the Korea Institute of Science and Technology (KIST) Jeonbuk Institute of Advanced Composite Materials in South Korea announced that it had developed an ultra-high-strength and ultra-high-modulus carbon nanotube fiber material through a joint research project with Professor Seongwoo Ryu's research team at Suwon University in South Korea, and Dr. Juan José Vilatela from the IMDEA Materials Institute in Spain. Their research is published in Science Advances. Existing polyacrylonitrile (PAN)-based carbon fibers have high strength and a low modulus, whereas pitch-based carbon fibers have low strength and a high modulus. Previous studies on simultaneously improving the tensile strength and modulus of carbon fibers only focused on adding a small amount of carbon nanotubes. However, the KIST, Suwon University, and IMDEA joint research team produced fibers…