Two-dimensional monolayer nanosheets made from layered perovskite have many desirable properties. However, it has been difficult to create them with tunable bandgaps in the visible region without adding oxygen defects. Recently, researchers from Japan were able to successfully develop chemically stable nanosheets from perovskite oxynitrides which had controllable bandgaps. These nanosheets have immense potential for future use in photocatalysis, electrocatalysts, and other sustainable technologies.
Credit: Kumamoto University Nanosheets, which include the well-known material graphene, are materials that possess nanoscale homogenous thicknesses, flat surfaces, and high crystallinity. Nanosheets have wide applications in photocatalysis, photoluminescence, and electronics. Recently, perovskites, which have semiconductor properties, have received attention in the scientific community as a promising material for producing two-dimensional (2D) monolayer nanosheets. However, these nanosheets would need have a bandgap corresponding to the energy of visible light to be useful, as this would determine when the semiconductor conducts electricity. The tunability of the bandgap has remained a major challenge for researchers, as creating 2D nanosheets from perovskite with a tunable bandgap is difficult. To solve this problem, a team of researchers from Kumamoto University, including Professor Shintaro Ida from the Institute of Industrial Nanomaterials, decided to focus on a group of perovskite materials known as Ruddlesden–Popper (RP) phase layered perovskite oxynitrides. In their paper published in the journal Small, the researchers were able to successfully create…