The four fundamental states of matter are solid, liquid, gas and plasma, but there others, such as Bose-Einstein condensates and time crystals, that are man-made.
The phrase five states of matter is a term to describe everything that makes up the "stuff" in the universe — anything that takes up space and has mass is matter. But that phrase is actually outdated, as there are many more states of matter than that. Four of these occur naturally, while others are only made fleetingly in the lab, under extreme conditions. All matter is made up of atoms , which are in turn made up of protons, neutrons and electrons. Atoms come together to form molecules, which are the building blocks for all types of matter, according to Washington State University (opens in new tab). Both atoms and molecules are held together by a form of potential energy called chemical energy (opens in new tab), according to the U.S. Energy Information Administration. Related: How many atoms are in the observable universe? The four natural states of matter are: Solids, liquids, gases and plasma. Bose-Einstein condensates, however, are only made in the lab. Other exotic states of matter can also be manufactured under extreme conditions in a lab, such as fermionic condensates and time crystals. There's even a strange type of matter, known as a chain-melted state, that stably exists as both a solid and liquid at once. Solids, liquids and gas In a solid , particles are packed tightly together so they don't move much. The electrons of each atom are constantly in motion, so the atoms have a small vibration, but they are fixed in their position. Because of this, particles in a solid have very low kinetic energy. Solids have a definite shape, as well as mass and volume, and do not conform to the shape of the container in which they are placed. Solids also have a high density, meaning that the particles are tightly packed together. In a liquid, the particles are more loosely packed than in a solid and are able to flow around each other, giving the liquid an indefinite shape. Therefore, the liquid will conform to the shape of its container. Much like solids,…