The design of the Inferno virtual machine
4 min read
fairly difficult
Article URL: Comments URL: Points: 1 # Comments: 0
The design of the Inferno virtual machine



Dis, the Inferno Virtual Machine

The Inferno virtual machine, called Dis, has several unusual aspects to its design: the instruction set, the module system, and the garbage collector.

The Dis instruction set provides a close match to the architecture of existing processors. Instructions are of the form

OP src1 , src2 , dst

The src1 and dst operands specify general addresses or arbitrary-sized constants, while the src2 operand is restricted to smaller constants and stack offsets to reduce code space. Each operand specifies an address either in the stack frame of the executing procedure or in the global data of its module.

The types of operands are set by the instructions. Basic types are word (32-bit signed), big (64-bit signed), byte (8-bit unsigned), real (64-bit IEEE floating point), and pointer (implementation-dependent). The instruction set follows the example of CISC processors, providing three-operand memory-to-memory operations for arithmetic, data motion, and so on. It also has instructions to allocate memory, to load modules, and to create, synchronize, and communicate between processes.

A module is the unit of dynamically loaded code and data. Modules are loaded by a VM instruction that returns a pointer to a method table for the module. That pointer is managed by the VM's garbage collector, so code and data for the module are garbage collected like any other memory. Type safety is preserved by checking method types at module load time using an MD5 signature of the type.

Memory management is intimately tied to the instruction set of the VM. Dis uses a hybrid garbage collection scheme: most garbage is collected by simple reference counting, while a real-time coloring collector gathers cyclic data. Because reference counting is an exact rather than conservative form of garbage collection, the type of all data items must be known to…
Read full article