Identifying asteroids with potential moons could aid researchers in understanding unique aspects of our solar system
An ultraprecise satellite tasked with mapping more than a billion stars across the galaxy has spotted something fascinating closer to home: 352 asteroids in the solar system that likely have their own orbiting moons. These systems, known as "binary asteroids," are challenging to pinpoint because of their distance from Earth and comparatively small size. Scientists brought these systems into focus by looking at data on the objects' motion from the European Space Agency's (ESA's) Gaia spacecraft, which floats about 930,000 miles (1.5 million kilometers) from Earth. This is the first set of binary asteroid candidates identified using only the positions and movements of celestial bodies, says Luana Liberato, an astrophysicist at the Côte d'Azur Observatory in France and lead author of the study, published today in Astronomy & Astrophysics. The Gaia spacecraft is made up of two optical telescopes that reflect light toward a specialized detector, allowing it to record the precise motions of numerous celestial objects as it hurtles around our solar system. For this study, the team analyzed measurements from the Gaia mission's third data release, searching through more than 150,000 asteroids identified by the spacecraft and looking for signs of "wobble"—a change in an object's expected position that is likely caused by the gravitational pull of another object that orbits it. On supporting science journalism If…