In materials science, candidates for novel functional materials are usually explored in a trial-and-error fashion through calculations, synthetic methods, and material analysis. However, the approach is time-consuming and requires expertise. Now, researchers have used a data-driven approach to automate the process of predicting new magnetic materials. By combining first-principles calculations, Bayesian optimization, and monoatomic alternating deposition, the proposed method can enable a faster development of next-generation electronic devices.
In materials science, candidates for novel functional materials are usually explored in a trial-and-error fashion through calculations, synthetic methods, and material analysis. However, the approach is time-consuming and requires expertise. Now, researchers from Japan have used a data-driven approach to automate the process of predicting new magnetic materials. By combining first-principles calculations, Bayesian optimization, and monoatomic alternating deposition, the proposed method can enable a faster development of next-generation electronic devices. Materials scientists are constantly on the lookout for new "functional materials" with favorable properties directed towards some application. For instance, finding novel functional magnetic materials could open doors to energy-efficient spintronic devices. In recent years, the development of spintronics devices like magnetoresistive random access memory -- an electronic device in which a single magnetoresistive element is integrated as one bit of information -- has been progressing rapidly, for which magnetic materials with high magnetocrystalline anisotropy (MCA) are required. Ferromagnetic materials, which retain their magnetization without an external magnetic field, are of particular interest as data storage systems, therefore. For instance, L1 0 -type ordered alloys consisting of two elements and two periods, such as L1 0 -FeCo and L1 0 -FeNi, have been studied actively as promising candidates for next-generation functional magnetic materials. However, the combination of constituent elements is extremely limited, and materials with extended element type, number, and periodicity have rarely been explored. What impedes this exploration? Scientists point at combinatorial explosions that can…