Why solid-state lithium-metal batteries could revolutionize the EV industry

thenextweb.com
4 min read
standard
Conventional lithium-ion batteries may have sown the seeds for our transition to electric mobility, but they have certain shortcomings. They're flammable, their range is still limited, ...
Ioanna is a writer at SHIFT. She likes the transition from old to modern, and she's all about shifting perspectives. Ioanna is a writer at SHIFT. She likes the transition from old to modern, and she's all about shifting perspectives.

and they're not as quick to charge as we'd like them to be.

Making EVs more competitive with gas-guzzlers will require remedies for these issues, and to achieve this we need a breakthrough in battery technology.

That's where lithium-metal batteries come in.

How do lithium-metal batteries differ from lithium-ion ones?

Both battery types use lithium to produce electrical energy and have a similar overall structure.

Simply put, they have an anode (the battery's negative electrode), a cathode (the battery's positive electrode), and an electrolyte, which helps transfer lithium ions between the electrodes. In other words, it regulates the flow of the electrical current.

There's also a separator (a permeable membrane), which keeps the anode and cathode apart to prevent electrical short circuits, while allowing the flow of lithium ions.

In a conventional lithium-ion battery, the anode is made mostly of graphite — a form of carbon that can hold and release charged lithium ions as they move back and forth between the electrodes.

But graphite is merely a host for lithium ions. This means that it can't store energy or produce a current itself, adding to the battery's dead weight.

In a lithium-metal battery, the anode is made of lithium instead of graphite. This results in a more energy-dense anode: its atoms can also produce current and store greater amounts of energy, compared to graphite-based ones with the same weight and volume.

But there's a problem: lithium is a reactive material, and being in contact with a liquid electrolyte can trigger reactions that could degrade the battery or cause it to combust. Especially if batteries are subject to dust, poor handling, or are…
Ioanna Lykiardopoulou
Read full article