# Reciprocal Gamma Function

trends
defining formula
f(z) = \frac{1}{\Gamma(z)}
media
Wikipedia creation date
2/9/2006
Wikipedia incoming links count
Wikipedia opening text
In mathematics, the reciprocal gamma function is the function f ( z ) = 1 Γ ( z ) , {\displaystyle f(z)={\frac {1}{\Gamma (z)}},} where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-hand plane). The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function. Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.
Wikipedia redirect
Reciprocal gamma
Reciprocal Gamma
Reciprocal Gamma function
Wikipedia URL